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Abstract— Fast image recognition and classification is
extremely important in various robotics applications such
as exploration, rescue, localization, etc. k-nearest neighbor
(kNN ) classifiers are popular tools used in classification since
they involve no explicit training phase, and are simple to
implement. However, they often require large amounts of
training data to work well in practice. In this paper, we
propose a batch-mode active learning algorithm for efficient
training of kNN classifiers, that substantially reduces the
amount of training required. As opposed to much previous
work on iterative single-sample active selection, the proposed
system selects samples in batches. We propose a coverage
formulation that enforces selected samples to be distributed
such that all data points have labeled samples at a bounded
maximum distance, given the training budget, so that there are
labeled neighbors in a small neighborhood of each point. Using
submodular function optimization, the proposed algorithm
presents a near-optimal selection strategy for an otherwise
intractable problem. Further we employ uncertainty sampling
along with coverage to incorporate model information and
improve classification. Finally, we use locality sensitive hashing
for fast retrieval of nearest neighbors during active selection as
well as classification, which provides 1-2 orders of magnitude
speedups thus allowing real-time classification with large
datasets.

I. INTRODUCTION

In many robotics applications using cameras, lasers or
other sensors, it is important to make quick decisions based
on sensor inputs. For example, determining whether an
obstacle is present in the scene, whether an object of interest
is approachable, finding whether a path exists to the goal, etc.
The primary technique that often lies at the heart of such
intelligent behavior is classification – to choose one out of
multiple actions / categories for a certain sensor input. As a
motivating problem consider the application of autonomous
exploration, where one important task is to identify the
location in which the robot lies. Figure 1 shows images from
the Scene-13 dataset [5], which consist of various indoor and
outdoor scenes. Using the robot cameras that captures these
images, the decision task is to identify the surroundings,
which can help context-based decision making for many
applications. The learning algorithms proposed in this paper
allow classification models to be trained with very little data
to achieve these tasks efficiently.

Due to the natural requirements of fast real-time
processing, along with the limited hardware resources
available, simple and fast classification techniques such as
k-nearest neighbor classifiers are extremely popular. One
appealing aspect of these classifiers is that they require no
explicit training phase – a complicated statistical model is not
required to be learned. Instead, as a part of classification, the

method chooses labeled training data that is close to the test
input, and using these to perform classification.

However, collecting such training data so as to perform
accurate classification is often a challenging task. Due to
the large variability and high dimensionality of classification
problems (with images and many other forms of data), a
large number of training samples are needed. Recently, active
learning has received a lot of attention towards achieving
good classification with limited training. The main idea
in active learning is to choose the “most informative”
samples and avoid the redundant ones so that training
effort is allocated effectively. However, challenges remain
since notions of informativeness are difficult to capture, and
depend on data types and distributions, statistical model
characteristics, and computational limitations.

Typically, active learning is performed with discriminative
classifiers such as Support Vector Machines / logistic
regression where the notion of classification boundary is
explicit. However, training such classifiers can be time-
consuming and impractical for applications involving large
amounts of data. On the other hand, even though classifiers
such as kNN are extremely popular for real applications,
we are not aware of work on active learning for the
same. This paper proposes algorithms for active selection
of informative training samples specifically for kNN
classifiers. Furthermore, as opposed to iterative single sample
selection, the algorithms we propose can be seamlessly
used for batch-mode selection, which refers to querying
for labels on batches of data samples and receiving
feedback in one shot. This form of interaction can be
advantageous since it can be easily performed in parallel,
and inherently incorporates look-ahead which avoids myopic
sample selection.

II. RELATED WORK

There has been a substantial recent interest in active
learning, especially due to the limited quantities of training
data that can be provided, which by current computing
standards is much lesser than what can be used for training.
As such, it is important to be able to effectively utilize
whatever little annotated data that is available. The main
goal of active learning is to select “informative samples”
for training, thus focusing effort on the most important data
to improve predictive performance. At the same time, this
reduces redundancy in the chosen data.

Work in active learning initially focused on binary
classification [3], [19]–[21], where it provided substantial
reduction in label complexity (amount of annotated training
data required) to achieve a certain classifier performance.
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Fig. 1. Example images for scene recognition from the 13 Scene categories dataset [5]. Recognizing and classifying scenes and objects are extremely
important for exploration.

There has been a lot of recent work on multi-class active
learning, examples include [10], [11], [13], which has shown
promising classification results with up to hundreds of
categories. However, most of the proposed active learning
algorithms are still iterative – they start with a random
training set, and add the most informative samples at
each round, after which the model is retrained. This
iterative process can be extremely expensive in practice if
computationally intensive models are to be learned, e.g.,
Support vector machines, Gaussian Process models, etc.

To overcome the problem due to iterative retraining,
there has been some work on batch-mode active learning,
examples include [6]–[8], [12]. These works perform batch-
mode selection through attempting to improve discrimination
performance [6], by reducing model uncertainty via Fisher
information [7], or by maximizing a joint objective that
measures informativeness and redundancy of the selected
samples [12]. On the other hand our paper models
batch-mode selection as a coverage problem, and then
chooses training samples to maximize coverage. In order
to incorporate current model information, sample similarity
measures obtained from the current model could be used.
The method proposed here is especially suitable for kNN
classifiers, since they classify data using majority voting
on nearest labeled data – as such, maximizing coverage to
thereby minimize the distance to the labeled point for a given
set of points is intuitively appealing.

Although typical batch-mode selection approaches
overcome computational intractability of subset selection
via certain approximations, note that the methods are
still quite expensive, and hard to scale to very large data
sizes. We employ kNN classifiers here since they are
extremely useful for very large scale problems, primarily
because no explicit training phase is involved, which can
otherwise be time consuming. We also use locality sensitive
hashing based approximations that allow the methods to
perform extremely fast classification, since only the nearest
neighbors are required.

III. SELECTION FRAMEWORK

In a 1 − NN classifier, for each data point, the label is
obtained by finding the label of the nearest labeled point. As
such, our goal is to maximize the coverage of the training
points. To this end, we want to ensure that all points have
their nearest labeled point at a bounded distance. Consider
that the distance between two points is given by the function
d ∈ RdxRd → R. Denote the training set (to be chosen

by active selection) as S. Say the budget allows for only a
certain number of labeled samples to be collected, such that
|S| ≤ n. Also, denote the active pool from which samples
are to be chosen by A.

The minimum distance for any point x from the training
set S is given by:

min
i:xi∈S

d(xi, x), (1)

The maximum distance for any point in the dataset to its
nearest neighbor is then:

max
j:xj∈A

min
i:xi∈S

d(xi, xj). (2)

Our objective, as mentioned previously is to minimize the
above distance, so that for each data point, there exist at least
one training point at a bounded distance. Hence the goal is
to solve the following

S = argmin
|S|≤n

max
j:xj∈A

min
i:xi∈S

d(xi, xj). (3)

For easier analysis, we instead define the objective
function to be maximized as:

Q(S) = dm − max
j:xj∈A

min
i:xi∈S

d(xi, xj), for S 6= φ (4)

= 0, otherwise.

where dm ≥ dmax, the maximum possible pairwise distance
in the dataset. Thus, dm is at least as large as the diameter
of the data. As we will see later, the exact value of dm is
inconsequential for the actual implementation, since its value
does not depend on the optimization variable.

Note that solving Equation (3) is equivalent to maximizing
Q given in Equation (4), subject to the budget constraint.
Thus, we can define our problem P as:

P : max Q(S) s.t. |S| ≤ n. (5)

The above problem in Equation (3) is similar to the known
k-center problem is combinatorial optimization, where the
goal is to find k-cluster centers along with point assignments
so as to minimize the maximum cluster radius. It can be
shown that the problem is intractable by a reduction to SET-
COVER, for instance.

However, exploiting the properties of the objective
function, strong approximation guarantees can be provided.
We explore two such approaches in this paper:
• In the following, we present a simple proof that the

above problem given in Equation (5) confirms to the
paradigm of submodular optimization [17], and thus
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greedy near-optimal algorithms are applicable. A (1 −
1/e) approximation guarantee can be provided for the
corresponding maximization problem.

• It can be shown that a farthest-first heuristic algorithm
for greedy selection of k centers leads to a near-optimal
solution for Equation (3), with a 2-approximation for the
minimization problem.

In this paper, we perform thorough empirical analysis
of batch-mode active learning with both of the above
approximation algorithms. Results show that the proposed
methods substantially improve the classifiers trained by
active learning, and at the same time are efficient for
application to large-scale data.

Claim 1: Q as defined in Equation (4) is a monotonically
non-decreasing function.

Proof: First note that for any S 6= φ, Q ≥ 0, since
dm is the at least as large as the largest pairwise distance
in the point set. Further, it is easy to see that for any
two sets S1 ⊆ S2, and xj ∈ A, mini:xi∈S1 d(xi, xj) ≥
mini:xi∈S2 d(xi, xj). Thus, the maximum such distance in
the set A is also bounded, giving Q(S1) ≤ Q(S2).

Claim 2: Q is a submodular set function.
Proof: Assume S1 ⊆ S2 such that S2 = S1 ∪ S . Also,

say x is a sample data point such that x ∈ A, x /∈ S2. Now

Q(S2 ∪ {x})−Q(S2) = max
j∈A

min
i∈S2

d(xi, xj) (6)

−max
j∈A

min
i∈S2∪{x}

d(xi, xj).

Q(S1)−Q(S1 ∪ {x}) = max
j∈A

min
i∈S1∪{x}

d(xi, xj) (7)

−max
j∈A

min
i∈S1

d(xi, xj).

Denote

M1(j) = min
i∈S1

d(xi, xj),

M2(j) = min
i∈S1∪{x}

d(xi, xj),

Qd = Q(S2 ∪ {x})−Q(S2) +Q(S1)−Q(S1 ∪ {x}). (8)

Thus,

Qd = max
jinA

min
i∈S1∪S

d(xi, xj)−max
j∈A

M1(j) (9)

+max
j∈A

M2(j)−max
j∈A

min
i∈S1∪S∪{x}

d(xi, xj).

= max
j∈A

min(M1(j),min
i∈S

d(xi, xj))−max
j∈A

M1(j)

+max
j∈A

M2(j)−max
j∈A

min(M2(j),min
i∈S

d(xi, xj)).

Denote δ = maxjM1(j) − maxjM2(j). Since M1(j) ≥
M2(j),∀j, we have δ ≥ 0, and

Qd = max
j∈A

min(M1(j),min
i∈S

d(xi, xj)) (10)

−max
j∈A

min(M2(j),min
i∈S

d(xi, xj))− δ.

We divide the analysis in 3 cases below.
Case 1:

M = min
i∈S

d(xi, xj) ≤M2(j).

Then,

Qd = max
j∈A

M −max
j∈A

M − δ

= −δ ≤ 0. (11)

Case 2:

M = min
i∈S

d(xi, xj) ≥M1(j).

Then,

Qd = max
j∈A

M1(j)−max
j∈A

M2(j)− δ

= 0. (12)

Case 3:

M2(j) < M = min
i∈S

d(xi, xj) < M1(j).

Then,

Qd =M −max
j∈A

M2(j)− δ ≤ 0. (13)

From Equations (11), (12), and (13), we have Qd ≤ 0. Thus
from Eqn (8),

Q(S2 ∪ {x})−Q(S2) ≤ Q(S1 ∪ {x})−Q(S1), (14)

where S1 ⊆ S2, thus showing that Q is submodular.

Intuitively, this means that adding an element to a smaller
set presents more value than adding it to a larger set – the
property of diminishing returns.

Given a submodular non-decreasing set function Q such
that Q(φ) = 0, Nemhauser et al. [17] show that a greedy
algorithm gives an objective value no worse than a (1−1/e)
factor of the optimal. Note that even though the globally
optimal solutions to both Equations (3) and (5) are the same,
the approximation guarantees are not. Specifically, the greedy
algorithm (1− 1/e)-approximation bound does not hold for
Equation (3), and the solution can be arbitrarily worse. To
see this, assume that the optimal value Q∗ = dm−d∗, where
d∗ is the optimal distance of interest. Also, denote by Q̂ the
achieved value of Q, and d̂ the corresponding distance. Let
c be the approximation factor. Then

dm − d̂ = c ∗ (dm − d∗), (15)

which implies that d̂ can be far away from d∗, and the
actual approximation obtained depends on dm, which is
independent of our desired optimization variable. However,
in our experiments, we often see approximations that are
much closer to the optimal giving good results in practice.

Given near-optimality guarantees, tools in submodular
optimization have been used extensively for problems in
experiment design, sensor placements, network outbreak
detections, etc. For example, in [14]–[16], submodular
optimization techniques are used for effective sensor
placement in Gaussian Processes and other graphical models.

A. kNN and submodularity

Now we turn our attention to the kNN classifier –
unfortunately, the previous analysis does not apply here. It is
straightforward to create a counter example showing that the
analogous problem for k nearest neighbors does not give a
submodular objective function. For example, consider a point
x and a set S2 = {x1, x2, x3, x4},S1 = {x3, x4}, so that
S1 ⊂ S2. Further assume that the samples are at distances
such that x1 is the closest to x and x4 is the farthest in
S2. Also, let d(x, x2) − d(x, x1) > d(x, x4) − d(x, x3).
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Input: Unlabeled data pool A, batch-size k

1. S := {φ}, the current batch of examples;
2. for i := 1 to k, do
3. foreach element x ∈ A\S, do
4. Compute Q(S ∪ {x}) using Equation (5);
5. Select the example x∗ = argmaxxQ(S ∪ {x});
6. S := S ∪ {x∗};
7. end
8. return S.

Output: The actively selected batch S, |S| = k.

Fig. 2. A greedy batch-mode active selection algorithm.

If we consider k = 2, and add a point x̂ which is closest
to x amongst all points, we can see that the property of
diminishing returns is violated – i.e., set S2 encounters
larger increase in objective value than set S1 according to
Equation (4). Thus the corresponding objective function is
not submodular.

Instead of looking at the maximum distance to the kth

nearest neighbor, one way might be to instead minimize the
average distance. Note that this problem (also intractable
in general) is slightly different from the k-median problem
heavily studied in the literature. In the k-median problem,
the goal is to minimize the sum of distances of points to
their cluster centers, which is different from our problem of
minimizing the average distance1 from each data point.

Due to the computational intractability of the problem,
we still use the 1NN formulation even when using a kNN
classifier with k different from 1. This approach performs
well empirically.

B. Greedy algorithm
Figure 2 describes the greedy batch-mode active selection

algorithm. As mentioned before, the algorithm achieves an
objective function value that is within a (1− 1/e) factor of
the optimal value.

C. Computational requirements
Even though the above greedy algorithm is polynomial

in the unlabeled data size and the batch size, it can still be
slow in practice. Specifically, the algorithm has a time bound
O(Nk2), with N points, and a batch size of k, and performs
worse with larger batches.

IV. GREEDY ALGORITHM FOR k-CENTER

The optimization formulation given in Equation (3) is
the k-center problem studied heavily in the literature. In
this setting, greedy algorithms such as farthest first point
selection have been explored for actively seeding clustering
[2]. The algorithm begins with a point chosen randomly from
the unlabeled pool, and at each iteration a new point is picked
to be farthest from the current chosen set. The distance of
a point to a set implies the distance from the point to its

1Minimizing the average is equivalent to minimizing the sum since all
points have k near neighbors considered.

Input: Unlabeled data pool A, batch-size k

1. S := xr, xR ∈ A, a randomly chosen sample;
2. for i := 2 to k, do
3. Find x∗ ∈ A\S such that x∗ = argmaxx d(x,S);
6. S := S ∪ {x∗};
7. end
8. return S .

Output: The actively selected batch S, |S| = k.

Fig. 3. Greedy farthest-first active selection algorithm.

closest element in the set. It can be shown that this simple
greedy algorithm gives a factor of 2 approximation [22] for
the minimization problem in Equation (3). We describe the
algorithm in Figure 3.

Even though the simplicity of the algorithm is appealing,
it tends to pick samples at the boundary of the data. As
such, the chosen samples are not representatives of the
data, and often lead to poor generalization. Since labeled
samples influence the accuracy of classification of nearby
points, choosing samples on the boundary (or outliers in a
sense) does not improve classification. As we show in the
next section, this problem can be alleviated by incorporating
model information in the formulation.

V. INCORPORATING CLASSIFIER INFORMATION

The methods described so far confirm well to the
coverage formulation, so that samples selected for training
are distributed well across the training set. However, no
information pertinent to classification is used – thus even
though these methods successfully solve the optimization
problem to near-optimality they do not work well in the
classification setting. For instance, consider the case where
the data is highly imbalanced, such that one class has
many data samples, while there are other classes with very
sparse populations. In this case, it is not useful to cover the
data set with well-distributed training samples, since most
such samples would be from the same class – instead, it
would be more beneficial to actively seek sparser classes.
Label information is thus extremely important in addition to
coverage. In this section, we improve the models to account
for current information from the training data, so that only
data which is “informative” for the current model is chosen
for training.

The main idea is to use model uncertainty to bias
the method towards the selection of points for which
there is classification uncertainty. Similar approaches have
been used for other classifiers like SVM and are known
as uncertainty sampling [11], [13]. Here we combine
uncertainty sampling with coverage objectives in the previous
sections to incorporate both pieces of information. The
experiments demonstrate that this method significantly
improves classification accuracy, and also requires lesser
computation.

We require notions of uncertainty that capture the value
of obtaining the label for a given data point. Also,
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we require the uncertainty measure to be applicable to
classification problems with many classes, and be amenable
to fast computation. Here, we focus on the proportion of
points coming from the different classes amongst the k
nearest neighbors of a sample point. For instance if all k
neighbors belong to the same class, the classification is lesser
confusion, and choosing that sample to obtain the label might
be redundant. On the other hand, if the k neighbors has each
sample coming from a different class, then the classifier is
uncertain about the membership of the sample point, and thus
it is “informative” to query. More precisely, our uncertainty
score is the difference between the number of points coming
from the most populous class and the second most populous
class amongst the k nearest neighbors. This difference is
similar to the notion of multi-class margin used in other
uncertainty sampling approaches [11], and results show that
it gives better performance compared to considered other
measures such as the entropy of the distributions.

In order to incorporate this measure into the coverage
formulation, we make a small modification to Equation 3.
Instead of searching over the entire active pool for samples,
we restrict the search to samples that give a high uncertainty
score. Specifically, if the batch of examples to be selected is
of size b, we simply choose b′ = mb most uncertain samples
over which the more extensive optimization is carried out,
for a multiplier m (say 5). The underlying hypothesis is
that given informative samples, coverage is an important
criterion to ensure good distribution of training samples.
Apart from improved classification, we also get the benefit
of substantially faster computation since the farthest first
algorithms and greedy submodular set selection only need to
be performed on the reduced informative sample set. Note
that the most informative samples can be chosen in O(Nk)
time, which is a factor of k improvement on the previous
algorithms. The actual subset selection then runs in time
independent of N , only relying on the required batch size.
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Fig. 4. Classification accuracy values with increasing batch sizes for USPS
and Scene-13 datasets. FF – farthest first greedy selection, SubOPT – greedy
algorithm using submodular optimization, ModFF – Farthest first modified
using informative sample subsampling. Note that SubOPT performs as bad
as random for the Scene-13, perhaps due to very high dimensional data.
Also, the improvements due to ModFF are smaller for Scene-13 than USPS.

VI. FAST SELECTION WITH LSH
Locality sensitive hashing (LSH) is a popular technique

for fast approximate near neighbor search in high
dimensions. It is particularly suited to our problem since the
proposed algorithms require repeated computation of nearest

neighbors, in order to update the chosen set, as well as
perform classification. Also, since the descriptors we use are
high dimensional, it can be expensive to do a linear scan
to find nearest neighbors. In the following, we give a brief
overview of one particular form of LSH for Euclidean spaces
using p-stable distributions.

Consider a d-dimensional space Rd, with the p-norm
denoted by ||v||dp for vector v. Let the metric space be
M = (X, d), in which the ball of radius r centered at q
is defined as B(q, r) = {v ∈ X | d(v, q) ≤ r}.

Given a dataset P and a query q, in the (R, c)–near
neighbor (NN) problem [9], one has to retrieve points p such
that d(p, q) ≤ cR, if there exists a point in P within distance
R from q. In other words, the approximate nearest neighbors
retrieved must be bounded close to the true nearest neighbor.

Definition 1: [9] A LSH family H = {h : S → U} is
called (r1, r2, p1, p2)-sensitive for D if for any u, v ∈ S,
• if u ∈ B(v, r1), then PrH[h(u) = h(v)] ≥ p1,
• if u /∈ B(v, r2), then PrH[h(u) = h(v)] ≤ p2.

If p1 > p2 and r1 < r2, the family H can be used for the
(R,c)-NN problem. The basic idea is that the hash functions
evaluate to the same values with high probability for points
that are close to each other, whereas for distant points the
probability of matching (collision) is low. The probability
gap can be increased by concatenation of multiple hash
functions chosen randomly from the family H.

Using the notation in Datar et al. [4], define the
function family G = {g : S → Uk}, where g(v) =
{h1(v), . . . , hk(v)}, where h ∈ H. For a given L, choose
g1, . . . , gL uniformly at random from G. k and L can be
chosen to satisfy the desired collision probability guarantees
as described in the next section.

In the pre-precessing step, each data sample from the
dataset is stored in buckets gi(x), i ∈ {1, . . . , L}. For a given
query q, points from all the buckets gi(q), i ∈ {1, . . . , L} are
retrieved. The nearest neighbor from these retrieved points
is then returned as the approximate nearest neighbor. It is
shown in [4] that given a (R, cR, p1, p2)–sensitive family H
for the distance measure d, then there exists an algorithm that
solves the (R, c)-NN problem in query time O(Nρ), where
N is the dataset size and ρ = ln1/p1

ln1/p2
. Thus for p1 > p2, the

above results in sublinear time retrieval.
It is further shown in [4] that the hash functions

ha,b(x) = ba·x+br c, where each element of a is sampled
from N (0, 1), and b chosen uniformly from [0, r] represents
a (R, cR, p1, p2)-sensitive LSH family for the Euclidean
distance measure. The result crucially relies on the fact that
the Gaussian distribution from which a is sampled is a 2-
stable distribution. As such, we use this hash family for
fast search of informative samples in our active learning
algorithm.

VII. EXPERIMENTS

In this section we perform experiments on 3 different real-
world datasets, namely US Postal service handwritten digits
dataset (USPS) [1], the Letter recognition dataset (Letter) [1]
and the Scene-13 dataset [5] consisting of images from 13
natural scene categories. For the USPS and Letter datasets,
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Fig. 5. (a) Speedup for approximate near-neighbor search using Locality
Sensitive Hashing. As expected, the speedup factor increases with a weaker
approximation in terms of distance to nearest neighbors. (b) Time required
for selection of samples from the active pool for different datasets. Note
that even though Farthest first and Submodular optimization are greedy
algorithms, the quadratic scaling with respect to the batch size makes
them slow. Modified Farthest first is much faster due to the sub-sampling
of informative samples that essentially reduces pool size. Using locality
sensitive hashing results is a further order of magnitude speedup.

vectorized pixel values were used as features, whereas for
Scene-13, 384-dimensional Gist descriptors [18] that give a
scene summary were used.

For USPS and Letter, we used 5000 samples in the
unlabeled pool, and 1000 samples for testing. For Scene-
13, 1000 samples were used in the unlabeled pool, along
with another 1000 for testing. We experimented with kNN
for varying k between 1 and 10. The figures show results
obtained using the 1 nearest neighbor classifier, however,
other results are very similar.

Figure 4 shows classification accuracy values as a function
of batch size, for two different datasets. We compare
the random selection, greedy farthest first algorithm (FF),
greedy submodular optimization algorithm (SubOPT), and
the modified farthest first incorporating model information
(ModFF). Note that the modified algorithm performs
significantly better than the two greedy algorithms, which
themselves beat random selection. This shows that active
learning can be used to chose informative samples to achieve
higher classification accuracy with the same training effort.

In Figure 5(a), we show the speedup achieved for near
neighbor queries on the USPS dataset using LSH. The
y-axis shows the approximation factor c, whereas the x-
axis indicates the speedup factor. Note that for reasonably
close approximations, a 500-fold speedup is achievable.
Furthermore, the approximation negligibly affected accuracy
in our experiments.

Finally, we show time results of the 4 different methods
(3 methods shown above) along with the addition of the
LSH approximation in Figure 5(b). As mentioned before,
incorporating model information has the desirable side-effect
of reducing the search space for the greedy algorithm, thus
resulting in improved performance. The LSH method further
speeds this up by at least 1 order of magnitude. Also note
that this approximation is even more useful for larger datasets
due to the asymptotic improvements in running time.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed efficient active learning
algorithms for kNN classifiers. The proposed methods

use greedy algorithms that provide near-optimal solutions
to otherwise intractable problems in a coverage based
selection formulation. We also proposed a simple way to
incorporate model information along with coverage to result
in improved classification performance. Finally, LSH based
approximation allow the methods to scale to very large scale
data, while still retaining classification accuracy. Future work
will focus on extending the work to ensemble classifiers,
which perform very well on many real-world applications.
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